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Descriptive combinatorics

Descriptive combinatorics is the study of combinatorial problems
under extra regularity constraints.

Surveys by KECHRIS–MARKS and PIKHURKO.

A proper k-coloring of a graph G is a mapping f : V (G) → k such
that f (x) 6= f (y) whenever x and y are adjacent. The chromatic
number of G , denoted by χ(G), is the smallest k ∈N such that G has
a proper k-coloring (assuming such k exists).

Possible types of regularity constraints:

• If V (G) is a standard Borel space, can consider Borel colorings
and define the Borel chromatic number χB(G) of G .

• If V (G) is a standard probability space, can define the
measurable chromatic number χM(G) of G . (“Borel mod null.”)

• If V (G) is a Polish space, can define the Baire-measurable
chromatic number χBM(G) of G . (“Borel mod meager.”)
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Continuous combinatorics

• If V (G) is a standard Borel space, can consider Borel colorings
and define the Borel chromatic number χB(G) of G .

• If V (G) is a zero-dimensional Polish space, can define the
continuous chromatic number χc(G) of G .

Zero-dimensional: topology is generated by clopen sets.

Continuous coloring: every color class is clopen.

Clearly, χc(G) ÊχB(G).

If X is a standard Borel space, then the Borel σ-algebra on X is
generated by a zero-dimensional Polish topology.
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Example: Schreier graphs

Let Γ be a countably infinite group and let S ⊂ Γ be a finite set.

The Cayley graph Cay(Γ,S):

vertices = Γ, γ∼σγ for σ ∈ S ∪S−1.

Similarly, given an action Γæ X , define the Schreier graph G(X ,S):

vertices = X , x ∼σ ·x for σ ∈ S ∪S−1.

Write χB(X ), χc(X ) for χB(G(X ,S)), χc(G(X ,S)) when S is clear.

(Bernoulli) shift Γæ 2Γ:

(γ · x)(δ) := x(δγ) for all x ∈ 2Γ and γ, δ ∈ Γ.

The free part: Free(2Γ) := {x ∈ 2Γ : γ · x 6= x for all γ 6= 1Γ}.
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Example: Schreier graphs

Theorem (KECHRIS–SOLECKI–TODORCEVIC ’91 + MARKS ’16)

Let Fn be the free group on n generators. Then

χB(Free(2Fn )) = χc(Free(2Fn )) = 2n +1.

Theorem (GAO–JACKSON–KROHNE–SEWARD)

Let Zd be the free Abelian group of rank d .

If d = 1, then

χB(Free(2Z)) = χc(Free(2Z)) = 3.

If d Ê 2, then χB(Free(2Z
d

)) = 3, but χc(Free(2Z
d

)) = 4.
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General setting: constraint satisfaction problems

Fix a set X and a positive integer k.

A constraint is a set B of functions D → k, where D is a finite subset
of X called the domain of B . Write dom(B) := D .

A function f : X → k violates B if f |D ∈ B . Otherwise, f satisfies B .

The functions in B are “bad” and we want to avoid them.

A constraint satisfaction problem (a CSP for short) is a set B of
constraints. To indicate that B is a CSP, we write B : X →? k.

A solution to a CSP B is a function f : X → k that satisfies all the
constraints B ∈B.

Example: In the graph coloring problem, X =V (G) and there is one
constraint per edge.

Anton Bernshteyn Probabilistic tools in continuous combinatorics



General setting: constraint satisfaction problems

Fix a set X and a positive integer k.

A constraint is a set B of functions D → k, where D is a finite subset
of X called the domain of B . Write dom(B) := D .

A function f : X → k violates B if f |D ∈ B . Otherwise, f satisfies B .

The functions in B are “bad” and we want to avoid them.

A constraint satisfaction problem (a CSP for short) is a set B of
constraints. To indicate that B is a CSP, we write B : X →? k.

A solution to a CSP B is a function f : X → k that satisfies all the
constraints B ∈B.

Example: In the graph coloring problem, X =V (G) and there is one
constraint per edge.

Anton Bernshteyn Probabilistic tools in continuous combinatorics



General setting: constraint satisfaction problems

Fix a set X and a positive integer k.

A constraint is a set B of functions D → k, where D is a finite subset
of X called the domain of B . Write dom(B) := D .

A function f : X → k violates B if f |D ∈ B . Otherwise, f satisfies B .

The functions in B are “bad” and we want to avoid them.

A constraint satisfaction problem (a CSP for short) is a set B of
constraints. To indicate that B is a CSP, we write B : X →? k.

A solution to a CSP B is a function f : X → k that satisfies all the
constraints B ∈B.

Example: In the graph coloring problem, X =V (G) and there is one
constraint per edge.

Anton Bernshteyn Probabilistic tools in continuous combinatorics



Probabilistic criterion for CSPs

Let B : X →? k be a CSP. The probability of a constraint B ∈B is

P[B ] := |B |
k |dom(B)| = prob. B is violated by a random coloring.

The neighborhood and the degree of a constraint B ∈B are

N (B) := {B ′ ∈B \ {B} : dom(B ′)∩dom(B) 6= ;}, deg(B) := |N (B)|.

Let p(B) := supB∈BP[B ] and d(B) := supB∈B deg(B).

Theorem (ERDŐS–LOVÁSZ ’75)—the Lovász Local Lemma

If e ·p(B) · (d(B)+1) É 1, then B has a solution.

If X is a zero-dimensional Polish space, what probabilistic
conditions ensure that B has a continuous solution f : X → k?
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Theorem (ERDŐS–LOVÁSZ ’75)—the Lovász Local Lemma

If e ·p(B) · (d(B)+1) É 1, then B has a solution.

If X is a zero-dimensional Polish space, what probabilistic
conditions ensure that B has a continuous solution f : X → k?

Anton Bernshteyn Probabilistic tools in continuous combinatorics



Continuous LLL

Theorem (ERDŐS–LOVÁSZ ’75)—the Lovász Local Lemma

If e ·p(B) · (d(B)+1) É 1, then B has a solution.

If X is a zero-dimensional Polish space, what probabilistic
conditions ensure that B has a continuous solution f : X → k?

vdeg(B) := sup
x∈X

|{B ∈B : x ∈ dom(B)}|, ord(B) := sup
B∈B

|dom(B)|.

Theorem (A.B.)

Let B : X →? k be a continuous CSP on a zero-dim. Polish space X .

If p(B) ·vdeg(B)ord(B) < 1, then B has a continuous solution.
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Continuous LLL

vdeg(B) := sup
x∈X
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|dom(B)|.

Theorem (A.B.)

Let B : X →? k be a continuous CSP on a zero-dim. Polish space X .

If p(B) ·vdeg(B)ord(B) < 1, then B has a continuous solution.

Non-example: Let G be a d-regular graph. An orientation of G is
sinkless if the outdegree of every vertex is at least 1.

A sinkless orientation of G is a solution to a CSP

Bsinkless = {Bx }x∈V (G) : E(G) →? 2.

Here Bx is the constraint with domain {e ∈ E(G) : e is incident to x}
saying that at least one edge must be leaving x.
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Let B : X →? k be a continuous CSP on a zero-dim. Polish space X .

If p(B) ·vdeg(B)ord(B) < 1, then B has a continuous solution.

Non-example: Since G is d-regular, we have

vdeg(B) = 2, ord(B) = d , p(B) = 1/2d .

Therefore, p(B) ·vdeg(B)ord(B) = 1. But:

Theorem (THORNTON)

For any d ∈N, there exists a d-regular Borel graph G without a Borel
sinkless orientation.
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Theorem (A.B.)

Let B : X →? k be a continuous CSP on a zero-dim. Polish space X .

If p(B) ·vdeg(B)ord(B) < 1, then B has a continuous solution.

In terms of p(B) and d(B): BRANDT–GRUNAU–ROZHOŇ + A.B.:

p(B) ·2d(B) < 1 =⇒ continuous solution.

In practice, often use the bound d(B) É ord(B)(vdeg(B)−1),
making the above theorem more widely applicable (especially if
ord(B) is small).
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Proof ideas

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(B). For x ∈ X , let Bx := {B ∈B : x ∈ dom(B)}.

For B ∈Bx and a color α, write

P[B |x 7→α] := |{ϕ ∈ B : ϕ(x) =α}|
k |dom(B)|−1

.

Key observation: For each x ∈ X , there is a color α such that
P[B |x 7→α] É vdeg ·P[B ] for all B ∈Bx .

PROOF. Note that for each B ∈Bx ,

P[B ] = 1

k

∑
α<k

P[B |x 7→α].

Thus, there are < k/vdeg colors α with P[B |x 7→α] > vdeg ·P[B ].

We are done since |Bx | É vdeg. ■
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Proof ideas

Key observation: For each x ∈ X , there is a color α such that
P[B |x 7→α] É vdeg ·P[B ] for all B ∈Bx .

Theorem (A.B.)

Let B : X →? k be a continuous CSP on a zero-dim. Polish space X .

If p(B) ·vdeg(B)ord(B) < 1, then B has a continuous solution.

If X is finite: use a greedy algorithm. Namely, color the elements of
X one by one, making sure that each time some element x ∈ dom(B)
is colored, the probability of B increases at most by a factor of vdeg.
In the end, the probability of each B will be < 1, so it must be 0.

In general: standard methods allow using greedy algorithms to
construct continuous colorings.
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Application: Seward–Tucker-Drob theorem

Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2Γ.

A subshift X is free if X ⊆ Free(2Γ).

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift X ?

PROUHET 1851, THUE 1906, MORSE 1921: Γ=Z.

PROOF IDEA. A sequence x ∈ 2Z is cube-free if it does not contain
the same nonempty contiguous subsequence 3 times in a row:

. . .000. . . 7 . . .010010010. . . 7 . . .01101001100101101001. . . 3

The set {x ∈ 2Z : x is cube-free} is a free subshift. Hard: X 6= ;. ■
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Application: Seward–Tucker-Drob theorem

Theorem (GAO–JACKSON–SEWARD ’09)

Every Γ admits a nonempty free subshift X ⊆ Free(2Γ).

The original proof is quite difficult.

AUBRUN–BARBIERI–THOMASSÉ ’19: a simple proof using the LLL.

PROOF IDEA. Define a CSP B : Γ→? 2 and set X := {solutions to B}.
The CSP B is constructed so that X is a free subshift. Use the LLL to
show that X 6= ;. ■
Theorem (SEWARD–TUCKER-DROB ’16)

If Γæ X is a free Borel action on a standard Borel space X , then
there is an equivariant Borel map π : X → Y , where Y ⊆ Free(2Γ) is a
free subshift.

Usual LLL-based techniques don’t work. . . but our continuous
version of the LLL does! =⇒ simple proof.
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Application: weak containment

Corollary

If Γæ X is a free Borel action on a standard Borel space X , then
there is an equivariant Borel map π : X → Free(2Γ).

In general, “Borel” here cannot be replaced by “continuous.”

Fix a countably infinite group Γ.

A k-pattern is a map p : D → k, where D ⊂ Γ is finite.

Given an action Γæ X and a coloring f : X → k, say that a pattern
p : D → k occurs in f if there is x ∈ X such that

f (δ ·x) = p(δ) for all δ ∈ D.

Otherwise, f avoids p.

PD (X , f ) := {p : D → k : p occurs in f }.
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Application: weak containment

Corollary

If Γæ X is a free Borel action on a standard Borel space X , then
there is an equivariant Borel map π : X → Free(2Γ).

In general, “Borel” here cannot be replaced by “continuous.”

Definition (ELEK)

X , Y zero-dimensional Polish spaces; Γæ X , Y continuously.

We say that X is weakly contained in Y , in symbols X4Y , if for any
k, a finite subset D ⊂ Γ, and a continuous k-coloring f : X → k,
there is a continuous k-coloring g : Y → k such that

PD (Y , g ) = PD (X , f ).

Inspired by analogous definitions for measure-preserving actions
(KECHRIS) and unitary representations.
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Application: weak containment

Corollary

If Γæ X is a free Borel action on a standard Borel space X , then
there is an equivariant Borel map π : X → Free(2Γ).

In general, “Borel” here cannot be replaced by “continuous.”

Theorem (A.B.)

If Γæ X is a free continuous action on a nonempty
zero-dimensional Polish space X , then Free(2Γ)4 X .

A topological version of the ABÉRT–WEISS theorem for
measure-preserving actions.

The proof uses the continuous LLL to build a continuous
equivariant map π : X → 2Γ whose image is “close” to Free(2Γ).
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Combinatorial consequences

Theorem (A.B.)

If Γæ X is a free continuous action on a nonempty
zero-dimensional Polish space X , then Free(2Γ)4 X .

Corollary

Let P be a finite set of k-patterns. TFAE:

• There is a continuous k-coloring of Free(2Γ) avoiding all
patterns in P .

• Every free continuous action Γæ X on a zero-dim. Polish space
admits a continuous k-coloring avoiding all patterns in P .

For example, χc(Free(2Γ)) Êχc(X ) for all free continuous actions
Γæ X on zero-dim. Polish spaces.

Yields a purely combinatorial characterization of finite sets P of
patterns that can be avoided by continuous colorings of Free(2Γ).
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Distributed algorithms

In the LOCAL model of distributed computation:

• Each vertex of an n-vertex graph G represents a processor,
while the edges represent communication links.

• The computation proceeds in synchronous rounds.

• During each round, the vertices first perform arbitrary local
computations and then broadcast messages to their neighbors.

• At the end, each vertex should output its own part of the global
solution (i.e., its own color).

• Complexity is measured by the number of rounds.

• Each vertex is assigned a unique identifier from {1, . . . ,n}.

• Every vertex executes the same algorithm, which must always
output a correct solution. (The algorithm is deterministic.)
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Continuous colorings and deterministic algorithms

Theorem (A.B./Grebík–Jackson–Rozhoň–Seward–Vidnyánszky)

Let S ⊂ Γ be a finite subset. Suppose P is a finite set of k-patterns
such that the domain of every p ∈P is a connected subset of the
Cayley graph Cay(Γ,S).

The following statements are equivalent:

• There is a continuous k-coloring of Free(2Γ) avoiding all
patterns in P .

• There is a deterministic LOCAL algorithm that, given an
n-vertex subgraph G of Cay(Γ,S), in o(logn) rounds outputs a
k-coloring of G avoiding all patterns in P .

The bound o(logn) can be improved to O(log∗ n).
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Compare and contrast

GAO–JACKSON–KROHNE–SEWARD: χc(Free(2Z
2
)) = 4.

BRANDT et al.: A (finite) n ×n grid graph can be properly k-colored
in o(logn) rounds if and only if k Ê 4.

GAO–JACKSON–KROHNE–SEWARD: No algorithm can decide, given a
finite set P of k-patterns, whether Free(2Γ) admits a continuous
k-coloring avoiding all patterns in P .

BRANDT et al.: No algorithm can decide, given a finite set P of
k-patterns, whether there is a o(logn)-round LOCAL algorithm that
find a k-colorings of n ×n grid graphs avoiding all patterns in P .
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Dream

Are there similar combinatorial characterizations for other
descriptive regularity notions (Borel, measurable, etc.)?
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Thank you!
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