Probabilistic tools in continuous combinatorics

Anton Bernshteyn

Georgia Institute of Technology

McGill DDC Seminar March 24, 2021

Surveys by KECHRIS–MARKS and PIKHURKO.

Surveys by KECHRIS–MARKS and PIKHURKO.

A proper *k*-coloring of a graph *G* is a mapping $f: V(G) \to k$ such that $f(x) \neq f(y)$ whenever *x* and *y* are adjacent. The chromatic number of *G*, denoted by $\chi(G)$, is the smallest $k \in \mathbb{N}$ such that *G* has a proper *k*-coloring (assuming such *k* exists).

Surveys by KECHRIS–MARKS and PIKHURKO.

A proper *k*-coloring of a graph *G* is a mapping $f: V(G) \to k$ such that $f(x) \neq f(y)$ whenever *x* and *y* are adjacent. The chromatic number of *G*, denoted by $\chi(G)$, is the smallest $k \in \mathbb{N}$ such that *G* has a proper *k*-coloring (assuming such *k* exists).

Possible types of regularity constraints:

Surveys by KECHRIS–MARKS and PIKHURKO.

A proper *k*-coloring of a graph *G* is a mapping $f: V(G) \to k$ such that $f(x) \neq f(y)$ whenever *x* and *y* are adjacent. The chromatic number of *G*, denoted by $\chi(G)$, is the smallest $k \in \mathbb{N}$ such that *G* has a proper *k*-coloring (assuming such *k* exists).

Possible types of regularity constraints:

• If V(G) is a standard Borel space, can consider Borel colorings and define the Borel chromatic number $\chi_B(G)$ of *G*.

Surveys by KECHRIS–MARKS and PIKHURKO.

A proper *k*-coloring of a graph *G* is a mapping $f: V(G) \to k$ such that $f(x) \neq f(y)$ whenever *x* and *y* are adjacent. The chromatic number of *G*, denoted by $\chi(G)$, is the smallest $k \in \mathbb{N}$ such that *G* has a proper *k*-coloring (assuming such *k* exists).

Possible types of regularity constraints:

- If V(G) is a standard Borel space, can consider Borel colorings and define the Borel chromatic number $\chi_B(G)$ of *G*.
- If V(G) is a standard probability space, can define the measurable chromatic number $\chi_M(G)$ of *G*. ("Borel mod null.")

Surveys by KECHRIS–MARKS and PIKHURKO.

A proper *k*-coloring of a graph *G* is a mapping $f: V(G) \rightarrow k$ such that $f(x) \neq f(y)$ whenever *x* and *y* are adjacent. The chromatic number of *G*, denoted by $\chi(G)$, is the smallest $k \in \mathbb{N}$ such that *G* has a proper *k*-coloring (assuming such *k* exists).

Possible types of regularity constraints:

- If V(G) is a standard Borel space, can consider Borel colorings and define the Borel chromatic number $\chi_B(G)$ of *G*.
- If V(G) is a standard probability space, can define the measurable chromatic number $\chi_M(G)$ of *G*. ("Borel mod null.")
- If V(G) is a Polish space, can define the Baire-measurable chromatic number χ_{BM}(G) of G. ("Borel mod meager.")

• If V(G) is a standard Borel space, can consider Borel colorings and define the Borel chromatic number $\chi_B(G)$ of *G*.

- If V(G) is a standard Borel space, can consider Borel colorings and define the Borel chromatic number $\chi_B(G)$ of *G*.
- If V(G) is a zero-dimensional Polish space, can define the continuous chromatic number χ_c(G) of G.

Zero-dimensional: topology is generated by clopen sets.

Continuous coloring: every color class is clopen.

- If V(G) is a standard Borel space, can consider Borel colorings and define the Borel chromatic number $\chi_B(G)$ of *G*.
- If V(G) is a zero-dimensional Polish space, can define the continuous chromatic number $\chi_c(G)$ of *G*.

Zero-dimensional: topology is generated by clopen sets.

Continuous coloring: every color class is clopen.

Clearly, $\chi_{c}(G) \ge \chi_{B}(G)$.

- If V(G) is a standard Borel space, can consider Borel colorings and define the Borel chromatic number $\chi_B(G)$ of *G*.
- If V(G) is a zero-dimensional Polish space, can define the continuous chromatic number $\chi_c(G)$ of *G*.

Zero-dimensional: topology is generated by clopen sets.

Continuous coloring: every color class is clopen.

Clearly, $\chi_{c}(G) \ge \chi_{B}(G)$.

If *X* is a standard Borel space, then the Borel σ -algebra on *X* is generated by a zero-dimensional Polish topology.

Let Γ be a countably infinite group and let $S \subset \Gamma$ be a finite set.

Let Γ be a countably infinite group and let $S \subset \Gamma$ be a finite set. The Cayley graph Cay(Γ , S):

```
vertices = \Gamma, \gamma \sim \sigma \gamma for \sigma \in S \cup S^{-1}.
```

Let Γ be a countably infinite group and let $S \subset \Gamma$ be a finite set. The Cayley graph Cay(Γ , S):

```
vertices = \Gamma, \gamma \sim \sigma \gamma for \sigma \in S \cup S^{-1}.
```

Similarly, given an action $\Gamma \cap X$, define the Schreier graph G(X, S):

vertices = *X*, $x \sim \sigma \cdot x$ for $\sigma \in S \cup S^{-1}$.

Let Γ be a countably infinite group and let $S \subset \Gamma$ be a finite set. The Cayley graph Cay(Γ , S):

```
vertices = \Gamma, \gamma \sim \sigma \gamma for \sigma \in S \cup S^{-1}.
```

Similarly, given an action $\Gamma \curvearrowright X$, define the Schreier graph G(X, S):

vertices = *X*, $x \sim \sigma \cdot x$ for $\sigma \in S \cup S^{-1}$.

Write $\chi_B(X)$, $\chi_c(X)$ for $\chi_B(G(X, S))$, $\chi_c(G(X, S))$ when *S* is clear.

Let Γ be a countably infinite group and let $S \subset \Gamma$ be a finite set. The Cayley graph Cay(Γ , S):

```
vertices = \Gamma, \gamma \sim \sigma \gamma for \sigma \in S \cup S^{-1}.
```

Similarly, given an action $\Gamma \curvearrowright X$, define the Schreier graph G(X, S):

```
vertices = X, x \sim \sigma \cdot x for \sigma \in S \cup S^{-1}.
```

Write $\chi_B(X)$, $\chi_c(X)$ for $\chi_B(G(X, S))$, $\chi_c(G(X, S))$ when *S* is clear.

(Bernoulli) shift $\Gamma \curvearrowright 2^{\Gamma}$:

 $(\gamma \cdot x)(\delta) \coloneqq x(\delta\gamma)$ for all $x \in 2^{\Gamma}$ and $\gamma, \delta \in \Gamma$.

Let Γ be a countably infinite group and let $S \subset \Gamma$ be a finite set. The Cayley graph Cay(Γ , S):

```
vertices = \Gamma, \gamma \sim \sigma \gamma for \sigma \in S \cup S^{-1}.
```

Similarly, given an action $\Gamma \curvearrowright X$, define the Schreier graph G(X, S):

```
vertices = X, x \sim \sigma \cdot x for \sigma \in S \cup S^{-1}.
```

Write $\chi_B(X)$, $\chi_c(X)$ for $\chi_B(G(X, S))$, $\chi_c(G(X, S))$ when *S* is clear.

(Bernoulli) shift $\Gamma \curvearrowright 2^{\Gamma}$:

 $(\gamma \cdot x)(\delta) \coloneqq x(\delta \gamma)$ for all $x \in 2^{\Gamma}$ and $\gamma, \delta \in \Gamma$.

The free part: Free(2^{Γ}) := { $x \in 2^{\Gamma} : \gamma \cdot x \neq x$ for all $\gamma \neq \mathbf{1}_{\Gamma}$ }.

Let \mathbb{F}_n be the free group on *n* generators. Then

$$\chi_{\mathrm{B}}(\mathrm{Free}(2^{\mathbb{F}_n})) = \chi_{\mathrm{c}}(\mathrm{Free}(2^{\mathbb{F}_n})) = 2n+1.$$

Let \mathbb{F}_n be the free group on *n* generators. Then

$$\chi_{\mathrm{B}}(\mathrm{Free}(2^{\mathbb{F}_n})) = \chi_{\mathrm{c}}(\mathrm{Free}(2^{\mathbb{F}_n})) = 2n+1.$$

Theorem (GAO–JACKSON–KROHNE–SEWARD)

Let \mathbb{Z}^d be the free Abelian group of rank *d*.

Let \mathbb{F}_n be the free group on *n* generators. Then

$$\chi_{\mathrm{B}}(\mathrm{Free}(2^{\mathbb{F}_n})) = \chi_{\mathrm{c}}(\mathrm{Free}(2^{\mathbb{F}_n})) = 2n+1.$$

Theorem (GAO–JACKSON–KROHNE–SEWARD)

Let \mathbb{Z}^d be the free Abelian group of rank *d*. If d = 1, then

$$\chi_{\mathrm{B}}(\mathrm{Free}(2^{\mathbb{Z}})) = \chi_{\mathrm{c}}(\mathrm{Free}(2^{\mathbb{Z}})) = 3.$$

Let \mathbb{F}_n be the free group on *n* generators. Then

$$\chi_{\mathrm{B}}(\mathrm{Free}(2^{\mathbb{F}_n})) = \chi_{\mathrm{c}}(\mathrm{Free}(2^{\mathbb{F}_n})) = 2n+1.$$

Theorem (GAO–JACKSON–KROHNE–SEWARD)

Let \mathbb{Z}^d be the free Abelian group of rank d. If d = 1, then $\chi_B(\operatorname{Free}(2^{\mathbb{Z}})) = \chi_c(\operatorname{Free}(2^{\mathbb{Z}})) = 3$. If $d \ge 2$, then $\chi_B(\operatorname{Free}(2^{\mathbb{Z}^d})) = 3$, but $\chi_c(\operatorname{Free}(2^{\mathbb{Z}^d})) = 4$. Fix a set *X* and a positive integer *k*.

A constraint is a set *B* of functions $D \rightarrow k$, where *D* is a finite subset of *X* called the domain of *B*. Write dom(*B*) := *D*.

A function $f: X \to k$ violates B if $f|_D \in B$. Otherwise, f satisfies B.

The functions in *B* are "bad" and we want to avoid them.

Fix a set *X* and a positive integer *k*.

A constraint is a set *B* of functions $D \rightarrow k$, where *D* is a finite subset of *X* called the domain of *B*. Write dom(*B*) := *D*.

A function $f: X \to k$ violates B if $f|_D \in B$. Otherwise, f satisfies B.

The functions in *B* are "bad" and we want to avoid them.

A constraint satisfaction problem (a CSP for short) is a set \mathscr{B} of constraints. To indicate that \mathscr{B} is a CSP, we write $\mathscr{B}: X \to k$.

A solution to a CSP \mathscr{B} is a function $f: X \to k$ that satisfies all the constraints $B \in \mathscr{B}$.

Fix a set *X* and a positive integer *k*.

A constraint is a set *B* of functions $D \rightarrow k$, where *D* is a finite subset of *X* called the domain of *B*. Write dom(*B*) := *D*.

A function $f: X \to k$ violates B if $f|_D \in B$. Otherwise, f satisfies B.

The functions in *B* are "bad" and we want to avoid them.

A constraint satisfaction problem (a CSP for short) is a set \mathscr{B} of constraints. To indicate that \mathscr{B} is a CSP, we write $\mathscr{B}: X \to k$.

A solution to a CSP \mathscr{B} is a function $f: X \to k$ that satisfies all the constraints $B \in \mathscr{B}$.

Example: In the graph coloring problem, X = V(G) and there is one constraint per edge.

Let $\mathscr{B}: X \to {}^{?} k$ be a CSP. The probability of a constraint $B \in \mathscr{B}$ is

 $\mathbb{P}[B] := \frac{|B|}{k^{|\text{dom}(B)|}} = \text{prob. } B \text{ is violated by a random coloring.}$

1.01

Let $\mathscr{B}: X \to {}^{?} k$ be a CSP. The probability of a constraint $B \in \mathscr{B}$ is

$$\mathbb{P}[B] := \frac{|B|}{k^{|\text{dom}(B)|}} = \text{prob. } B \text{ is violated by a random coloring.}$$

The neighborhood and the degree of a constraint $B \in \mathcal{B}$ are

 $N(B) := \{B' \in \mathscr{B} \setminus \{B\} : \operatorname{dom}(B') \cap \operatorname{dom}(B) \neq \emptyset\}, \quad \operatorname{deg}(B) := |N(B)|.$

1 0 1

Let $\mathscr{B}: X \to {}^{?} k$ be a CSP. The probability of a constraint $B \in \mathscr{B}$ is

$$\mathbb{P}[B] := \frac{|B|}{k^{|\text{dom}(B)|}} = \text{prob. } B \text{ is violated by a random coloring.}$$

The neighborhood and the degree of a constraint $B \in \mathcal{B}$ are

 $N(B) := \{B' \in \mathscr{B} \setminus \{B\} : \operatorname{dom}(B') \cap \operatorname{dom}(B) \neq \emptyset\}, \quad \operatorname{deg}(B) := |N(B)|.$

Let $p(\mathscr{B}) := \sup_{B \in \mathscr{B}} \mathbb{P}[B]$ and $d(\mathscr{B}) := \sup_{B \in \mathscr{B}} \deg(B)$.

1.01

Let $\mathscr{B}: X \to {}^{?} k$ be a CSP. The probability of a constraint $B \in \mathscr{B}$ is

$$\mathbb{P}[B] := \frac{|B|}{k^{|\text{dom}(B)|}} = \text{prob. } B \text{ is violated by a random coloring.}$$

The neighborhood and the degree of a constraint $B \in \mathcal{B}$ are

 $N(B) := \{B' \in \mathscr{B} \setminus \{B\} : \operatorname{dom}(B') \cap \operatorname{dom}(B) \neq \emptyset\}, \quad \operatorname{deg}(B) := |N(B)|.$

Let $p(\mathscr{B}) := \sup_{B \in \mathscr{B}} \mathbb{P}[B]$ and $d(\mathscr{B}) := \sup_{B \in \mathscr{B}} \deg(B)$.

Theorem (ERDŐS–LOVÁSZ '75)—the Lovász Local Lemma

If $e \cdot p(\mathcal{B}) \cdot (d(\mathcal{B}) + 1) \leq 1$, then \mathcal{B} has a solution.

1.01

Let $\mathscr{B}: X \to {}^{?} k$ be a CSP. The probability of a constraint $B \in \mathscr{B}$ is

$$\mathbb{P}[B] := \frac{|B|}{k^{|\text{dom}(B)|}} = \text{prob. } B \text{ is violated by a random coloring.}$$

The neighborhood and the degree of a constraint $B \in \mathcal{B}$ are

 $N(B) := \{B' \in \mathscr{B} \setminus \{B\} : \operatorname{dom}(B') \cap \operatorname{dom}(B) \neq \emptyset\}, \quad \operatorname{deg}(B) := |N(B)|.$

Let $p(\mathscr{B}) := \sup_{B \in \mathscr{B}} \mathbb{P}[B]$ and $d(\mathscr{B}) := \sup_{B \in \mathscr{B}} \deg(B)$.

Theorem (ERDŐS–LOVÁSZ '75)—the Lovász Local Lemma

If $e \cdot p(\mathcal{B}) \cdot (d(\mathcal{B}) + 1) \leq 1$, then \mathcal{B} has a solution.

If *X* is a zero-dimensional Polish space, what probabilistic conditions ensure that \mathscr{B} has a continuous solution $f: X \to k$?

Theorem (ERDŐS–LOVÁSZ '75)—the Lovász Local Lemma

If $e \cdot p(\mathcal{B}) \cdot (d(\mathcal{B}) + 1) \leq 1$, then \mathcal{B} has a solution.

If *X* is a zero-dimensional Polish space, what probabilistic conditions ensure that \mathscr{B} has a continuous solution $f: X \to k$?

Theorem (ERDŐS–LOVÁSZ '75)—the Lovász Local Lemma

If $e \cdot p(\mathcal{B}) \cdot (d(\mathcal{B}) + 1) \leq 1$, then \mathcal{B} has a solution.

If *X* is a zero-dimensional Polish space, what probabilistic conditions ensure that \mathscr{B} has a continuous solution $f: X \to k$?

$$\mathsf{vdeg}(\mathscr{B}) \coloneqq \sup_{x \in X} |\{B \in \mathscr{B} : x \in \mathsf{dom}(B)\}|, \quad \mathsf{ord}(\mathscr{B}) \coloneqq \sup_{B \in \mathscr{B}} |\mathsf{dom}(B)|.$$

Theorem (ERDŐS–LOVÁSZ '75)—the Lovász Local Lemma

If $e \cdot p(\mathcal{B}) \cdot (d(\mathcal{B}) + 1) \leq 1$, then \mathcal{B} has a solution.

If *X* is a zero-dimensional Polish space, what probabilistic conditions ensure that \mathscr{B} has a continuous solution $f: X \to k$?

$$\mathsf{vdeg}(\mathscr{B}) \coloneqq \sup_{x \in X} |\{B \in \mathscr{B} : x \in \mathsf{dom}(B)\}|, \quad \mathsf{ord}(\mathscr{B}) \coloneqq \sup_{B \in \mathscr{B}} |\mathsf{dom}(B)|.$$

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*. If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution. $\mathsf{vdeg}(\mathscr{B}) \coloneqq \sup_{x \in X} |\{B \in \mathscr{B} : x \in \mathsf{dom}(B)\}|, \quad \mathsf{ord}(\mathscr{B}) \coloneqq \sup_{B \in \mathscr{B}} |\mathsf{dom}(B)|.$

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

 $\mathsf{vdeg}(\mathscr{B}) \coloneqq \sup_{x \in X} |\{B \in \mathscr{B} : x \in \mathsf{dom}(B)\}|, \quad \mathsf{ord}(\mathscr{B}) \coloneqq \sup_{B \in \mathscr{B}} |\mathsf{dom}(B)|.$

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Non-example:

 $\mathsf{vdeg}(\mathscr{B}) \coloneqq \sup_{x \in X} |\{B \in \mathscr{B} : x \in \mathsf{dom}(B)\}|, \quad \mathsf{ord}(\mathscr{B}) \coloneqq \sup_{B \in \mathscr{B}} |\mathsf{dom}(B)|.$

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Non-example: Let *G* be a *d*-regular graph.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Non-example: Let G be a d-regular graph. An orientation of G is sinkless if the outdegree of every vertex is at least 1.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*. If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Non-example: Let G be a d-regular graph. An orientation of G is sinkless if the outdegree of every vertex is at least 1.

A sinkless orientation of G is a solution to a CSP

$$\mathscr{B}_{\text{sinkless}} = \{B_x\}_{x \in V(G)} : E(G) \to {}^{?}2.$$

Here B_x is the constraint with domain $\{e \in E(G) : e \text{ is incident to } x\}$ saying that at least one edge must be leaving x.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Non-example: Since *G* is *d*-regular, we have

$$\operatorname{vdeg}(\mathscr{B}) = 2$$
, $\operatorname{ord}(\mathscr{B}) = d$, $p(\mathscr{B}) = 1/2^d$.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*. If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Non-example: Since *G* is *d*-regular, we have

$$\operatorname{vdeg}(\mathscr{B}) = 2$$
, $\operatorname{ord}(\mathscr{B}) = d$, $p(\mathscr{B}) = 1/2^d$.

Therefore, $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} = 1.$

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*. If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Non-example: Since *G* is *d*-regular, we have

$$\operatorname{vdeg}(\mathscr{B}) = 2$$
, $\operatorname{ord}(\mathscr{B}) = d$, $p(\mathscr{B}) = 1/2^d$.

Therefore, $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} = 1$. But:

Theorem (THORNTON)

For any $d \in \mathbb{N}$, there exists a *d*-regular Borel graph *G* without a Borel sinkless orientation.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*. If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

In terms of $p(\mathscr{B})$ and $d(\mathscr{B})$: BRANDT–GRUNAU–ROZHOŇ + A.B.:

 $p(\mathscr{B}) \cdot 2^{d(\mathscr{B})} < 1 \implies \text{continuous solution.}$

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*. If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

In terms of $p(\mathscr{B})$ and $d(\mathscr{B})$: BRANDT–GRUNAU–ROZHOŇ + A.B.:

 $p(\mathscr{B}) \cdot 2^{d(\mathscr{B})} < 1 \implies \text{continuous solution.}$

In practice, often use the bound $d(\mathscr{B}) \leq \operatorname{ord}(\mathscr{B})(\operatorname{vdeg}(\mathscr{B}) - 1)$, making the above theorem more widely applicable (especially if $\operatorname{ord}(\mathscr{B})$ is small).

The proof uses the method of conditional probabilities.

The proof uses the method of conditional probabilities.

Set $vdeg := vdeg(\mathscr{B})$.

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(\mathscr{B}). For $x \in X$, let $\mathscr{B}_x := \{B \in \mathscr{B} : x \in \text{dom}(B)\}$.

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(\mathscr{B}). For $x \in X$, let $\mathscr{B}_x := \{B \in \mathscr{B} : x \in \text{dom}(B)\}$.

For $B \in \mathscr{B}_x$ and a color α , write

$$\mathbb{P}[B \mid x \mapsto \alpha] := \frac{|\{\varphi \in B : \varphi(x) = \alpha\}|}{k^{|\mathrm{dom}(B)|-1}}.$$

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(\mathscr{B}). For $x \in X$, let $\mathscr{B}_x := \{B \in \mathscr{B} : x \in \text{dom}(B)\}$.

For $B \in \mathscr{B}_x$ and a color α , write

$$\mathbb{P}[B \mid x \mapsto \alpha] := \frac{|\{\varphi \in B : \varphi(x) = \alpha\}|}{k^{|\mathrm{dom}(B)|-1}}.$$

Key observation: For each $x \in X$, there is a color α such that $\mathbb{P}[B | x \mapsto \alpha] \leq \text{vdeg} \cdot \mathbb{P}[B]$ for all $B \in \mathscr{B}_x$.

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(\mathscr{B}). For $x \in X$, let $\mathscr{B}_x := \{B \in \mathscr{B} : x \in \text{dom}(B)\}$.

For $B \in \mathscr{B}_x$ and a color α , write

$$\mathbb{P}[B \mid x \mapsto \alpha] := \frac{|\{\varphi \in B : \varphi(x) = \alpha\}|}{k^{|\mathrm{dom}(B)|-1}}.$$

Key observation: For each $x \in X$, there is a color α such that $\mathbb{P}[B | x \mapsto \alpha] \leq \text{vdeg} \cdot \mathbb{P}[B]$ for all $B \in \mathcal{B}_x$.

PROOF.

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(\mathscr{B}). For $x \in X$, let $\mathscr{B}_x := \{B \in \mathscr{B} : x \in \text{dom}(B)\}$.

For $B \in \mathscr{B}_x$ and a color α , write

$$\mathbb{P}[B \mid x \mapsto \alpha] := \frac{|\{\varphi \in B : \varphi(x) = \alpha\}|}{k^{|\mathrm{dom}(B)|-1}}.$$

Key observation: For each $x \in X$, there is a color α such that $\mathbb{P}[B | x \mapsto \alpha] \leq \text{vdeg} \cdot \mathbb{P}[B]$ for all $B \in \mathscr{B}_x$.

PROOF. Note that for each $B \in \mathscr{B}_x$,

$$\mathbb{P}[B] = \frac{1}{k} \sum_{\alpha < k} \mathbb{P}[B \,|\, x \mapsto \alpha].$$

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(\mathscr{B}). For $x \in X$, let $\mathscr{B}_x := \{B \in \mathscr{B} : x \in \text{dom}(B)\}$.

For $B \in \mathscr{B}_x$ and a color α , write

$$\mathbb{P}[B \mid x \mapsto \alpha] := \frac{|\{\varphi \in B : \varphi(x) = \alpha\}|}{k^{|\mathrm{dom}(B)|-1}}.$$

Key observation: For each $x \in X$, there is a color α such that $\mathbb{P}[B | x \mapsto \alpha] \leq \text{vdeg} \cdot \mathbb{P}[B]$ for all $B \in \mathscr{B}_x$.

PROOF. Note that for each $B \in \mathscr{B}_x$,

$$\mathbb{P}[B] = \frac{1}{k} \sum_{\alpha < k} \mathbb{P}[B \,|\, x \mapsto \alpha].$$

Thus, there are $\langle k | \mathsf{vdeg colors } \alpha \text{ with } \mathbb{P}[B | x \mapsto \alpha] > \mathsf{vdeg} \cdot \mathbb{P}[B].$

The proof uses the method of conditional probabilities.

Set vdeg := vdeg(\mathscr{B}). For $x \in X$, let $\mathscr{B}_x := \{B \in \mathscr{B} : x \in \text{dom}(B)\}$.

For $B \in \mathscr{B}_x$ and a color α , write

$$\mathbb{P}[B \mid x \mapsto \alpha] := \frac{|\{\varphi \in B : \varphi(x) = \alpha\}|}{k^{|\mathrm{dom}(B)|-1}}.$$

Key observation: For each $x \in X$, there is a color α such that $\mathbb{P}[B | x \mapsto \alpha] \leq \text{vdeg} \cdot \mathbb{P}[B]$ for all $B \in \mathcal{B}_x$.

PROOF. Note that for each $B \in \mathscr{B}_x$,

$$\mathbb{P}[B] = \frac{1}{k} \sum_{\alpha < k} \mathbb{P}[B \,|\, x \mapsto \alpha].$$

Thus, there are $\langle k | \mathsf{vdeg colors } \alpha \text{ with } \mathbb{P}[B | x \mapsto \alpha] > \mathsf{vdeg} \cdot \mathbb{P}[B].$

We are done since $|\mathscr{B}_{x}| \leq v \text{deg}$.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

If *X* is finite: use a greedy algorithm.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

If *X* is finite: use a greedy algorithm. Namely, color the elements of *X* one by one, making sure that each time some element $x \in \text{dom}(B)$ is colored, the probability of *B* increases at most by a factor of vdeg.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

If *X* is finite: use a greedy algorithm. Namely, color the elements of *X* one by one, making sure that each time some element $x \in \text{dom}(B)$ is colored, the probability of *B* increases at most by a factor of vdeg. In the end, the probability of each *B* will be < 1, so it must be 0.

Theorem (A.B.)

Let $\mathscr{B}: X \to {}^{?} k$ be a continuous CSP on a zero-dim. Polish space *X*.

If $p(\mathscr{B}) \cdot \mathsf{vdeg}(\mathscr{B})^{\mathsf{ord}(\mathscr{B})} < 1$, then \mathscr{B} has a continuous solution.

If *X* is finite: use a greedy algorithm. Namely, color the elements of *X* one by one, making sure that each time some element $x \in \text{dom}(B)$ is colored, the probability of *B* increases at most by a factor of vdeg. In the end, the probability of each *B* will be < 1, so it must be 0.

In general: standard methods allow using greedy algorithms to construct continuous colorings.

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq$ Free(2^{Γ}).

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift *X*?

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq$ Free(2^{Γ}).

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift *X*?

PROUHET 1851, THUE 1906, MORSE 1921: $\Gamma = \mathbb{Z}$.

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq$ Free(2^{Γ}).

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift *X*?

PROUHET 1851, THUE 1906, MORSE 1921: $\Gamma = \mathbb{Z}$.

PROOF IDEA. A sequence $x \in 2^{\mathbb{Z}}$ is cube-free if it does not contain the same nonempty contiguous subsequence 3 times in a row:

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq$ Free(2^{Γ}).

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift X?

PROUHET 1851, THUE 1906, MORSE 1921: $\Gamma = \mathbb{Z}$.

PROOF IDEA. A sequence $x \in 2^{\mathbb{Z}}$ is cube-free if it does not contain the same nonempty contiguous subsequence 3 times in a row:

...000... 🗡

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq$ Free(2^{Γ}).

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift X?

PROUHET 1851, THUE 1906, MORSE 1921: $\Gamma = \mathbb{Z}$.

PROOF IDEA. A sequence $x \in 2^{\mathbb{Z}}$ is cube-free if it does not contain the same nonempty contiguous subsequence 3 times in a row:

...000.... X ...010010010.... X

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq$ Free(2^{Γ}).

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift X?

PROUHET 1851, THUE 1906, MORSE 1921: $\Gamma = \mathbb{Z}$.

PROOF IDEA. A sequence $x \in 2^{\mathbb{Z}}$ is cube-free if it does not contain the same nonempty contiguous subsequence 3 times in a row:

...000.... X ...010010010.... X ...01101001100101101001.... 🗸

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq \text{Free}(2^{\Gamma})$.

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift X?

PROUHET 1851, THUE 1906, MORSE 1921: $\Gamma = \mathbb{Z}$.

PROOF IDEA. A sequence $x \in 2^{\mathbb{Z}}$ is cube-free if it does not contain the same nonempty contiguous subsequence 3 times in a row:

...000.... X ...010010010.... X ...01101001100101101001.... 🗸

The set $\{x \in 2^{\mathbb{Z}} : x \text{ is cube-free}\}$ is a free subshift.

 Γ a countably infinite group.

A subshift is a closed shift-invariant subset of 2^{Γ} .

A subshift *X* is free if $X \subseteq \text{Free}(2^{\Gamma})$.

Question (GLASNER–USPENSKIJ)

Which groups Γ admit a nonempty free subshift X?

PROUHET 1851, THUE 1906, MORSE 1921: $\Gamma = \mathbb{Z}$.

PROOF IDEA. A sequence $x \in 2^{\mathbb{Z}}$ is cube-free if it does not contain the same nonempty contiguous subsequence 3 times in a row:

...000.... X ...010010010.... X ...01101001100101101001.... 🗸

The set { $x \in 2^{\mathbb{Z}}$: *x* is cube-free} is a free subshift. Hard: $X \neq \emptyset$.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN-BARBIERI-THOMASSÉ '19: a simple proof using the LLL.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN-BARBIERI-THOMASSÉ '19: a simple proof using the LLL.

PROOF IDEA. Define a CSP \mathscr{B} : $\Gamma \rightarrow {}^{?}2$ and set $X := \{$ solutions to $\mathscr{B} \}$.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN-BARBIERI-THOMASSÉ '19: a simple proof using the LLL.

PROOF IDEA. Define a CSP \mathscr{B} : $\Gamma \rightarrow$ [?] 2 and set $X \coloneqq$ {solutions to \mathscr{B} }. The CSP \mathscr{B} is constructed so that X is a free subshift.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN-BARBIERI-THOMASSÉ '19: a simple proof using the LLL.

PROOF IDEA. Define a CSP \mathscr{B} : $\Gamma \rightarrow$? 2 and set $X := \{$ solutions to $\mathscr{B} \}$. The CSP \mathscr{B} is constructed so that X is a free subshift. Use the LLL to show that $X \neq \emptyset$.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN-BARBIERI-THOMASSÉ '19: a simple proof using the LLL.

PROOF IDEA. Define a CSP \mathscr{B} : $\Gamma \rightarrow$? 2 and set $X := \{$ solutions to $\mathscr{B} \}$. The CSP \mathscr{B} is constructed so that X is a free subshift. Use the LLL to show that $X \neq \emptyset$.

Theorem (SEWARD–TUCKER-DROB '16)

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to Y$, where $Y \subseteq \text{Free}(2^{\Gamma})$ is a free subshift.

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN-BARBIERI-THOMASSÉ '19: a simple proof using the LLL.

PROOF IDEA. Define a CSP \mathscr{B} : $\Gamma \rightarrow$? 2 and set $X := \{$ solutions to $\mathscr{B} \}$. The CSP \mathscr{B} is constructed so that X is a free subshift. Use the LLL to show that $X \neq \emptyset$.

Theorem (SEWARD–TUCKER-DROB '16)

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to Y$, where $Y \subseteq \text{Free}(2^{\Gamma})$ is a free subshift.

Usual LLL-based techniques don't work...

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN–BARBIERI–THOMASSÉ '19: a simple proof using the LLL.

PROOF IDEA. Define a CSP \mathscr{B} : $\Gamma \rightarrow$ [?] 2 and set $X := \{$ solutions to $\mathscr{B} \}$. The CSP \mathscr{B} is constructed so that X is a free subshift. Use the LLL to show that $X \neq \emptyset$.

Theorem (SEWARD–TUCKER-DROB '16)

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to Y$, where $Y \subseteq \text{Free}(2^{\Gamma})$ is a free subshift.

Usual LLL-based techniques don't work... but our continuous version of the LLL does!

Theorem (GAO–JACKSON–SEWARD '09)

Every Γ admits a nonempty free subshift $X \subseteq \text{Free}(2^{\Gamma})$.

The original proof is quite difficult.

AUBRUN-BARBIERI-THOMASSÉ '19: a simple proof using the LLL.

PROOF IDEA. Define a CSP \mathscr{B} : $\Gamma \rightarrow$? 2 and set $X := \{$ solutions to $\mathscr{B} \}$. The CSP \mathscr{B} is constructed so that X is a free subshift. Use the LLL to show that $X \neq \emptyset$.

Theorem (SEWARD–TUCKER-DROB '16)

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to Y$, where $Y \subseteq \text{Free}(2^{\Gamma})$ is a free subshift.

Usual LLL-based techniques don't work... but our continuous version of the LLL does! \implies simple proof.

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to \text{Free}(2^{\Gamma})$.

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous."

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous." Fix a countably infinite group Γ .

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous." Fix a countably infinite group Γ .

A *k*-pattern is a map $p: D \rightarrow k$, where $D \subset \Gamma$ is finite.

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous." Fix a countably infinite group Γ .

A *k*-pattern is a map $p: D \rightarrow k$, where $D \subset \Gamma$ is finite.

Given an action $\Gamma \cap X$ and a coloring $f: X \to k$, say that a pattern $p: D \to k$ occurs in f if there is $x \in X$ such that

$$f(\delta \cdot x) = p(\delta) \text{ for all } \delta \in D.$$

Otherwise, f avoids p.

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi \colon X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous." Fix a countably infinite group Γ .

A *k*-pattern is a map $p: D \rightarrow k$, where $D \subset \Gamma$ is finite.

Given an action $\Gamma \cap X$ and a coloring $f: X \to k$, say that a pattern $p: D \to k$ occurs in f if there is $x \in X$ such that

$$f(\delta \cdot x) = p(\delta) \text{ for all } \delta \in D.$$

Otherwise, f avoids p.

 $\mathscr{P}_D(X, f) \coloneqq \{p \colon D \to k : p \text{ occurs in } f\}.$

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi \colon X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous."

Definition (ELEK)

X, *Y* zero-dimensional Polish spaces; $\Gamma \cap X$, *Y* continuously.

We say that *X* is weakly contained in *Y*, in symbols $X \preccurlyeq Y$, if for any *k*, a finite subset $D \subset \Gamma$, and a continuous *k*-coloring $f: X \to k$, there is a continuous *k*-coloring $g: Y \to k$ such that

$$\mathcal{P}_D(Y,g)=\mathcal{P}_D(X,f).$$

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi \colon X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous."

Definition (ELEK)

X, *Y* zero-dimensional Polish spaces; $\Gamma \cap X$, *Y* continuously.

We say that *X* is weakly contained in *Y*, in symbols $X \preccurlyeq Y$, if for any *k*, a finite subset $D \subset \Gamma$, and a continuous *k*-coloring $f: X \rightarrow k$, there is a continuous *k*-coloring $g: Y \rightarrow k$ such that

$$\mathcal{P}_D(Y,g)=\mathcal{P}_D(X,f).$$

Inspired by analogous definitions for measure-preserving actions (KECHRIS) and unitary representations.

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi \colon X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous."

Theorem (A.B.)

If $\Gamma \curvearrowright X$ is a free continuous action on a nonempty zero-dimensional Polish space *X*, then Free $(2^{\Gamma}) \preccurlyeq X$.

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous."

Theorem (A.B.)

If $\Gamma \cap X$ is a free continuous action on a nonempty zero-dimensional Polish space *X*, then Free $(2^{\Gamma}) \leq X$.

A topological version of the ABÉRT–WEISS theorem for measure-preserving actions.

If $\Gamma \cap X$ is a free Borel action on a standard Borel space *X*, then there is an equivariant Borel map $\pi: X \to \text{Free}(2^{\Gamma})$.

In general, "Borel" here cannot be replaced by "continuous."

Theorem (A.B.)

If $\Gamma \cap X$ is a free continuous action on a nonempty zero-dimensional Polish space *X*, then Free(2^{Γ}) $\leq X$.

A topological version of the ABÉRT–WEISS theorem for measure-preserving actions.

The proof uses the continuous LLL to build a continuous equivariant map $\pi: X \to 2^{\Gamma}$ whose image is "close" to Free(2^{Γ}).

Combinatorial consequences

Theorem (A.B.)

If $\Gamma \cap X$ is a free continuous action on a nonempty zero-dimensional Polish space *X*, then Free(2^{Γ}) $\leq X$.

Corollary

Let \mathcal{P} be a finite set of *k*-patterns. TFAE:

- There is a continuous *k*-coloring of Free (2^{Γ}) avoiding all patterns in \mathcal{P} .
- Every free continuous action Γ ∩ X on a zero-dim. Polish space admits a continuous *k*-coloring avoiding all patterns in 𝒫.

Combinatorial consequences

Theorem (A.B.)

If $\Gamma \cap X$ is a free continuous action on a nonempty zero-dimensional Polish space *X*, then Free(2^{Γ}) $\leq X$.

Corollary

Let \mathcal{P} be a finite set of *k*-patterns. TFAE:

- There is a continuous *k*-coloring of Free (2^{Γ}) avoiding all patterns in \mathcal{P} .
- Every free continuous action Γ ∩ X on a zero-dim. Polish space admits a continuous *k*-coloring avoiding all patterns in 𝒫.

For example, $\chi_c(\text{Free}(2^{\Gamma})) \ge \chi_c(X)$ for all free continuous actions $\Gamma \curvearrowright X$ on zero-dim. Polish spaces.

Combinatorial consequences

Theorem (A.B.)

If $\Gamma \cap X$ is a free continuous action on a nonempty zero-dimensional Polish space *X*, then $\operatorname{Free}(2^{\Gamma}) \preccurlyeq X$.

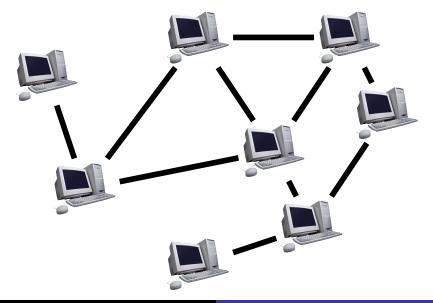
Corollary

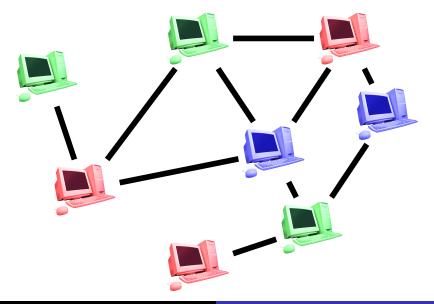
Let \mathcal{P} be a finite set of *k*-patterns. TFAE:

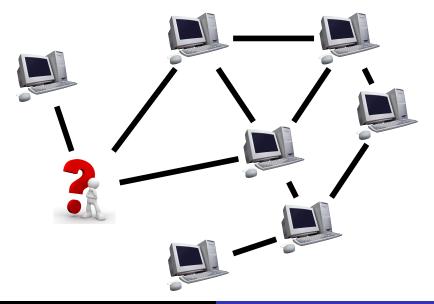
- There is a continuous *k*-coloring of $Free(2^{\Gamma})$ avoiding all patterns in \mathcal{P} .
- Every free continuous action Γ ∩ X on a zero-dim. Polish space admits a continuous *k*-coloring avoiding all patterns in 𝒫.

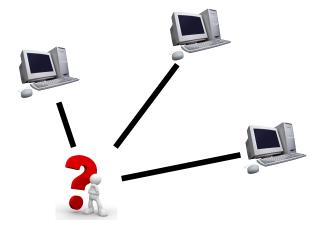
For example, $\chi_c(\text{Free}(2^{\Gamma})) \ge \chi_c(X)$ for all free continuous actions $\Gamma \curvearrowright X$ on zero-dim. Polish spaces.

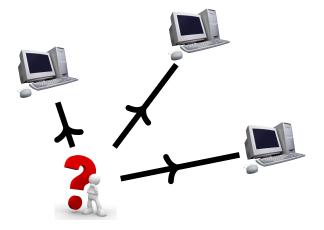
Yields a purely combinatorial characterization of finite sets \mathscr{P} of patterns that can be avoided by continuous colorings of Free(2^{Γ}).

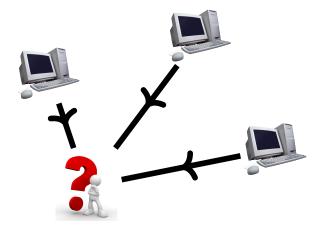












In the LOCAL model of distributed computation:

• Each vertex of an *n*-vertex graph *G* represents a processor, while the edges represent communication links.

- Each vertex of an *n*-vertex graph *G* represents a processor, while the edges represent communication links.
- The computation proceeds in synchronous rounds.

- Each vertex of an *n*-vertex graph *G* represents a processor, while the edges represent communication links.
- The computation proceeds in synchronous rounds.
- During each round, the vertices first perform arbitrary local computations and then broadcast messages to their neighbors.

- Each vertex of an *n*-vertex graph *G* represents a processor, while the edges represent communication links.
- The computation proceeds in synchronous rounds.
- During each round, the vertices first perform arbitrary local computations and then broadcast messages to their neighbors.
- At the end, each vertex should output its own part of the global solution (i.e., its own color).

- Each vertex of an *n*-vertex graph *G* represents a processor, while the edges represent communication links.
- The computation proceeds in synchronous rounds.
- During each round, the vertices first perform arbitrary local computations and then broadcast messages to their neighbors.
- At the end, each vertex should output its own part of the global solution (i.e., its own color).
- Complexity is measured by the number of rounds.

- Each vertex of an *n*-vertex graph *G* represents a processor, while the edges represent communication links.
- The computation proceeds in synchronous rounds.
- During each round, the vertices first perform arbitrary local computations and then broadcast messages to their neighbors.
- At the end, each vertex should output its own part of the global solution (i.e., its own color).
- Complexity is measured by the number of rounds.
- Each vertex is assigned a unique identifier from {1,..., *n*}.

- Each vertex of an *n*-vertex graph *G* represents a processor, while the edges represent communication links.
- The computation proceeds in synchronous rounds.
- During each round, the vertices first perform arbitrary local computations and then broadcast messages to their neighbors.
- At the end, each vertex should output its own part of the global solution (i.e., its own color).
- Complexity is measured by the number of rounds.
- Each vertex is assigned a unique identifier from {1,..., *n*}.
- Every vertex executes the same algorithm, which must always output a correct solution. (The algorithm is deterministic.)

Theorem (A.B./Grebík–Jackson–Rozhoň–Seward–Vidnyánszky)

Let $S \subset \Gamma$ be a finite subset. Suppose \mathcal{P} is a finite set of *k*-patterns such that the domain of every $p \in \mathcal{P}$ is a connected subset of the Cayley graph Cay(Γ , S).

The following statements are equivalent:

• There is a continuous *k*-coloring of $Free(2^{\Gamma})$ avoiding all patterns in \mathcal{P} .

Theorem (A.B./Grebík–Jackson–Rozhoň–Seward–Vidnyánszky)

Let $S \subset \Gamma$ be a finite subset. Suppose \mathcal{P} is a finite set of *k*-patterns such that the domain of every $p \in \mathcal{P}$ is a connected subset of the Cayley graph Cay(Γ , S).

The following statements are equivalent:

- There is a continuous *k*-coloring of $Free(2^{\Gamma})$ avoiding all patterns in \mathcal{P} .
- There is a deterministic LOCAL algorithm that, given an *n*-vertex subgraph *G* of Cay(Γ , *S*), in $o(\log n)$ rounds outputs a *k*-coloring of *G* avoiding all patterns in \mathcal{P} .

Theorem (A.B./Grebík–Jackson–Rozhoň–Seward–Vidnyánszky)

Let $S \subset \Gamma$ be a finite subset. Suppose \mathcal{P} is a finite set of *k*-patterns such that the domain of every $p \in \mathcal{P}$ is a connected subset of the Cayley graph Cay(Γ , S).

The following statements are equivalent:

- There is a continuous *k*-coloring of Free (2^{Γ}) avoiding all patterns in \mathcal{P} .
- There is a deterministic LOCAL algorithm that, given an *n*-vertex subgraph *G* of Cay(Γ , *S*), in $o(\log n)$ rounds outputs a *k*-coloring of *G* avoiding all patterns in \mathcal{P} .

The bound $o(\log n)$ can be improved to $O(\log^* n)$.

GAO–JACKSON–KROHNE–SEWARD: $\chi_c(\text{Free}(2^{\mathbb{Z}^2})) = 4$.

BRANDT et al.: A (finite) $n \times n$ grid graph can be properly *k*-colored in $o(\log n)$ rounds if and only if $k \ge 4$.

GAO–JACKSON–KROHNE–SEWARD: $\chi_c(\text{Free}(2^{\mathbb{Z}^2})) = 4$.

BRANDT et al.: A (finite) $n \times n$ grid graph can be properly *k*-colored in $o(\log n)$ rounds if and only if $k \ge 4$.

GAO–JACKSON–KROHNE–SEWARD: No algorithm can decide, given a finite set \mathscr{P} of *k*-patterns, whether Free(2^{Γ}) admits a continuous *k*-coloring avoiding all patterns in \mathscr{P} .

BRANDT et al.: No algorithm can decide, given a finite set \mathcal{P} of k-patterns, whether there is a $o(\log n)$ -round LOCAL algorithm that find a k-colorings of $n \times n$ grid graphs avoiding all patterns in \mathcal{P} .

Are there similar combinatorial characterizations for other descriptive regularity notions (Borel, measurable, etc.)?

Thank you!